Bringing Soils Back to Life

Summary

- Fire impact on soil system
- Nutrient, microbes and plants
- Post-recovery actions

What are your fire recovery goals?

Fire impacts and recovery times dependant on fire duration and temperature - 1-11 years microbial populations - >80 years for full soil ecosystem recovery

Fire impacts on soil

Loss of organic matter, increased pH and EC, increased erosion and nutrient and water cycle breakdowns

Loss of biomass and biodiversity Hydrophobic waxes Soil structure collapse

Mineral dynamics

Reduction in total nutrients through; oxidation, volatilization, ash transport, leaching, inorganic lock-up, and erosion
Anions more sensitive to fire; N, S & B – Short-term spike in N

Surface may be > 620°C Top 2 inches rarely exceed 148°C Below 25-30cm typically unaffected Photo: USDA, Brad Rust

Microbial dynamics

- Loss in biodiversity and community structures
- 50% reduction in fungal diversity and abundance
- Reduction in N-cyclers

Bacteria and archaea

- Oldest, simplest, most numerous organisms
- Involved in: disease suppression, nutrient retention, form soil micro-aggregates

Bacterial dominance post fire creates:

- Fine aggregates/ compaction
- High bacteria and low predators tie up nutrients

 Germination signal for many "weeds"

Bacterial dominated

B:F balance

Fungal dominated

Fungi

- Disease suppression
- Retain nutrients
- Decomposers
- Form soil <u>macro</u>aggregates
- Hold soils together
- Yield

Fungi are vulnerable to fire

50% drop in biomass following fires =

Increase erosion
Decrease in mineral uptake; Ca, P, trace elements
Decrease in water holding

(Dooley and Treseder, 2012)

Esposito, Giuseppe, et al. "Post-fire erosion response in a watershed mantled by volcaniclastic deposits, Sarno Mountains, Southern Italy." *Catena* 152 (2017): 227-241

Changes in diversity

Some bacterial and fungal species increase following fire:

- Bacteria: Massilia and Arthrobacter genera
- Some fungi: *Penicillium* and *Fusicladium* (pathogens)

Hydrophobic soils

Soils become water repellent under extreme heat and under certain vegetation

Hydrophobic conditions

- By-products of organic materials
 - Aggregate around soil particles
 - Move through profile to form impervious layers
- Created by microbes

Managing hydrophobic soils

- Low rates of alkaline products
 - Liquid / fine limes
 - Milk
- Vermicast
- Seed dressings of the above inputs

Vermicast

- A vital fire recovery tool
- Contains biology and signals to kick-start soil rebuilding processes – the elixir of life!

Vermicast

- Contains microbes which EAT hydrophobic coatings;
 - Pseduomonas flourenscens,
 Serratia marcescens and Baccilus spp

Optimising biological diversity and biomass is critical

- Plant health and nutrition is driven by biological functions
 - More communities= more signals=more gene expression= increased crop health and resilience
 - Without community, full gene expression cannot occur!

Actions for remediation

Kick-start biological processes asap

Bio-stimulants

- Fish hydrolysate provides bioavailable P, N, S and oils to stimulate fungi
- Liquid limes feed biology, breakdown hydrophobic layers
- Molasses feed bacteria, kick start life

Soil Program post fire:

7 litres fish1 litre Molasses15 ltr Liquid lime

Post treatment 5% plant yield recovery in control vs 74% in treatment (Dr Peter Espie, AgScience)

Control

Generic recipe

Application	<u>Rate Ha</u>
Fish Bio-Stimulant	10 ltr
Molasses/liquid sugar	500 mls
Vermliquid	5 litres
Liquid Lime	25 litres
Humic Acid	1 litre

- Fungal diverse compost/extracts
- Vermicast/vermiliquid
 microbially balanced

Extractors

Seed treatment

- 5 litres vermiliquid/T seed
- Fine limes
- Liquid humic acid
- Seaweed
- Korean Natural Farming : LAB, EM, BIM

Extract seed coating

- 100mls milk
- 10mls molasses
- 1 litre of sieved compost
- Water (amount varies pancake batter)
- Mix 1 litre slurry to 20kg seed
- Dry seed

Using animals

Whole systems approach

- Create environment for plant recovery
- Address water infiltration
 - Chemical or physical restraints
 - If using mechanical interventions, FEED microbes!
- Plants build soil

- Support optimal plant health, seed dressings

References

Pereg, L., Mataix-Solera, J., McMillan, M., & García-Orenes, F. (2018). The impact of post-fire salvage logging on microbial nitrogen cyclers in Mediterranean forest soil. *Science of The Total Environment*, *619*, 1079-1087.

Fultz, Lisa M., et al. "Forest wildfire and grassland prescribed fire effects on soil biogeochemical processes and microbial communities: Two case studies in the semi-arid Southwest." *Applied soil ecology* 99 (2016): 118-128.

Barreiro, A., et al. "Using phospholipid fatty acid and community level physiological profiling techniques to characterize soil microbial communities following an experimental fire and different stabilization treatments." *Catena* 135 (2015): 419-429.

https://phys.org/news/2019-01-forest-soil-decades-centuries-recover.html

Dooley SR, Treseder KK. The effect of fire on microbial biomass: a meta-analysis of field studies. Biogeochemistry, 2012; 109:49-61.

Marcet Miramontes, P., S. González Pimentel, and B. Coleiro. "Reclamation of a burned forest soil with fish manure vermicompost." *FIRE EFFECTS ON SOIL PROPERTIES*: 254

Roberts, F.J., and Carbon, B.A., 1972, Water repellence in sandy soils of southwestern Australia. II. Some chemical characteristics of the hydrophobic skins: Australian Journal of Soil Research, v. 10, p. 35-42.

Esposito, Giuseppe, et al. "Post-fire erosion response in a watershed mantled by volcaniclastic deposits, Sarno Mountains, Southern Italy." *Catena* 152 (2017): 227-241.

Whitman, Thea, et al. "Soil Bacterial and Fungal Response to Wildfires in the Canadian Boreal Forest Across a Burn Severity Gradient." *bioRxiv* (2019): 512798.

www.integritysoils.co.nz

